Дискретизация и квантование непрерывных изображений
Очень редко изображения, получаемые в информационных системах, имеют цифровую форму. Поэтому их преобразование к этому виду является обязательной операцией, если предполагается использовать цифровую обработку, передачу, хранение. Как и при одномерных сигналах, данное преобразование включает в себя две процедуры. Первая состоит в замене непрерывного кадра дискретным и обычно называется дискретизацией, а вторая выполняет замену непрерывного множества значений яркости множеством квантованных значений и носит название квантования. При цифровом представлении каждому из квантованных значений яркости ставится в соответствие двоичное число, чем и достигается возможность ввода изображения в ЭВМ.Двумерный характер изображения по сравнению с обычными сигналами содержит дополнительные возможности оптимизации цифрового представления с целью сокращения объема получаемых цифровых данных. В связи с этим изучался вопрос о наилучшем размещении уровней квантования, а также об использовании различных растров [1.1...1.3], другие аспекты данной задачи. Следует, однако, сказать, что в подавляющем большинстве случаев на практике применяют дискретизацию, основанную на использовании прямоугольного растра, и равномерное квантование яркости. Это связано с простотой выполнения соответствующих операций и относительно небольшими преимуществами от использования оптимальных преобразований. При использовании прямоугольного растра в окончательном виде цифровое изображение обычно представляет собой матрицу, строки и столбцы которой соответствуют строкам и столбцам изображения.
1.1. Дискретизация непрерывных изображений
Замену непрерывного изображения дискретным можно выполнить различными способами. Можно, например, выбрать какую-либо систему ортогональных функций и, вычислив коэффициенты представления изображения по этой системе (по этому базису), заменить ими изображение. Многообразие базисов дает возможность образования различных дискретных представлений непрерывного изображения. Однако наиболее употребительной является периодическая дискретизация, в частности, как упоминалось выше, дискретизация с прямоугольным растром. Такой способ дискретизации может рассматриваться как один из вариантов применения ортогонального базиса, использующего в качестве своих элементов сдвинутые

Пусть



где


![]() |
Рис. 1.1. Расположение отсчетов при прямоугольной дискретизации |
Двумерный непрерывный частотный спектр



которому отвечает двумерное обратное непрерывное преобразование Фурье:

Последнее соотношение верно при любых значениях



Обозначим для краткости через




Выполняя замену переменных по правилу






Здесь учтено, что





Теперь выражение (1.5) имеет форму обратного преобразования Фурье, следовательно стоящая под знаком интеграла функция

является двумерным спектром дискретного изображения. В плоскости ненормированных частот выражение (1.6) имеет вид:

Из (1.7) следует, что двумерный спектр дискретного изображения является прямоугольно периодическим с периодами








![]() |
![]() |
а) |
б) |
Рис. 1.2. Частотные спектры непрерывного и дискретного изображений |
Сам результат суммирования существенно зависит от значений этих частотных сдвигов, или, иными словами, от выбора интервалов дискретизации










Таким образом, в пределах частотной области




в которых

Соотношение (1.8) определяет способ получения непрерывного изображения



Спектр изображения на его выходе содержит ненулевые компоненты лишь в частотной области



Таким образом, идеальное интерполяционное восстановление непрерывного изображения выполняется при помощи двумерного фильтра с прямоугольной частотной характеристикой (1.10). Нетрудно записать в явном виде алгоритм восстановления непрерывного изображения.
Двумерная импульсная характеристика восстанавливающего фильтра, которую легко получить при помощи обратного преобразования Фурье от (1.10), имеет вид:

Продукт фильтрации может быть определен при помощи двумерной свертки входного изображения и данной импульсной характеристики. Представив входное изображение





после выполнения свертки находим:

Полученное соотношение указывает способ точного интерполяционного восстановления непрерывного изображения по известной последовательности его двумерных отсчетов. Согласно этому выражению для точного восстановления в роли интерполирующих функций должны использоваться двумерные функции вида

Подчеркнем еще раз, что эти результаты справедливы, если двумерный спектр сигнала является финитным, а интервалы дискретизации достаточно малы. Справедливость сделанных выводов нарушается, если хотя бы одно из этих условий не выполняется. Реальные изображения редко имеют спектры с ярко выраженными граничными частотами. Одной из причин, приводящих к неограниченности спектра, является ограниченность размеров изображения. Из-за этого при суммировании в (1.7) в каждой из зон

Особенностью оптимального восстановления изображения в промежутках между отсчетами является использование всех отсчетов дискретного изображения, как это предписывается процедурой (1.11). Это не всегда удобно, часто требуется восстанавливать сигнал в локальной области, опираясь на некоторое небольшое количество имеющихся дискретных значений. В этих случаях целесообразно применять квазиоптимальное восстановление при помощи различных интерполирующих функций.
Такого рода задача возникает, например, при решении проблемы привязки двух изображений, когда из-за геометрических расстроек этих изображений имеющиеся отсчеты одного из них могут соответствовать некоторым точкам, находящимся в промежутках между узлами другого. Решение этой задачи более подробно обсуждается в последующих разделах данного пособия.
![]() |
![]() |
а) |
б) |
![]() |
![]() |
в) |
г) |
Рис. 1.3. Влияние интервала дискретизации на восстановление изображения «Отпечаток пальца» |

Рис. 1.3.в,г показывают последствия от неправильного выбора интервалов дискретизации. При их получении осуществлялась “дискретизация непрерывного” изображения рис. 1.3.а путем прореживания его отсчетов. Рис. 1.3.в соответствует увеличению шага дискретизации по каждой координате в три, а рис. 1.3.г - в четыре раза. Это было бы допустимо, если бы значения граничных частот были ниже в такое же число раз. В действительности, как видно из рис. 1.3.б, происходит нарушение требований (1.9), особенно грубое при четырехкратном прореживании отсчетов. Поэтому восстановленные при помощи алгоритма (1.11) изображения оказываются не только расфокусированными, но и сильно искажают текстуру отпечатка.
![]() |
![]() |
а) |
б) |
![]() |
![]() |
в) |
г) |
Рис. 1.4. Влияние интервала дискретизации на восстановление изображения «Портрет» |
На рис. 1. 4 приведена аналогичная серия результатов, полученных для изображения типа “портрет”. Последствия более сильного прореживания ( в четыре раза на рис. 1.4.в и в шесть раз на рис. 1.4.г) проявляются в основном в потере четкости. Субъективно потери качества представляются менее значительными, чем на рис. 1.3. Это находит свое объяснение в значительно меньшей ширине спектра, чем у изображения отпечатка пальца. Дискретизация исходного изображения соответствует граничной частоте


1.2. Квантование изображений
При цифровой обработке изображений непрерывный динамический диапазон значений яркости делится на ряд дискретных уровней. Эта процедура называется квантованием. Квантователь преобразует непрерывную переменную










Рис.1.5.Функция, описывающая квантование
Задача построения квантователя состоит в определении значений порогов




Таким образом, задачу построения квантователя можно сформулировать как задачу нахождения оптимальных значений


Обычно при фиксированном числе уровней квантователь оптимизируется по критерию минимальной среднеквадратической ошибки

в предположении, что яркость


Cреднеквадратическая ошибка квантования (1.12) равна

Дифференцируя (1.13) по переменным




(1.14)

Следует отметить, что крайние пороги




Из (1.15) следует, что пороги




При равномерном распределении яркости нелинейные уравнения (1.15) можно представить в виде [1.3]





В системах цифровой обработки изображений стремятся уменьшить число уровней и порогов квантования, т.к. от их количества зависит длина двоичного кодового слова, которым представляются проквантованные отсчеты в ЭВМ. Однако при относительно небольшом числе уровней

Ложные контуры значительно ухудшают визуальное качество изображения, т.к. зрение человека особенно чувствительно именно к контурам. При равномерном квантовании типичных изображений требуется не менее 64 уровней.
На рис.1.7.а и 1.7. б приведены результаты равномерного квантования изображения «Портрет» соответственно на 256 и 14 уровней квантования.

Рис.1.6. К механизму возникновения ложных контуров
![]() |
![]() |
а) |
б) |
Рис.1.7. Результаты равномерного квантования |
![]() |
![]() |
Рис.1.8. Результат неравномерного квантования |
Рис.1.9. Гистограмма изображения “Портрет” |


Чтобы избежать неравномерного квантования, которое не может быть выполнено с помощью стандартного АЦП, используют нелинейные преобразования (рис.1.10). Отсчет







Рис.1.10. Квантование с предварительным нелинейным преобразованием
Для разрушения ложных контуров Робертс предложил перед равномерным квантованием к отсчетам яркости добавлять шум с равномерной плотностью распределения вероятностей. Добавленный шум переводит одни отсчеты изображения на уровень выше, а другие на уровень ниже. Тем самым разрушаются ложные контуры. Дисперсия добавляемого шума должна быть небольшой, чтобы не привести к искажениям, воспринимаемым как «снег» на изображении, и в то же время достаточной для разрушения ложных контуров. Обычно используют равномерно распределенный шум на интервале

При 8-ми уровнях квантования добавляемый шум становится слишком заметным, однако ложные контуры разрушены практически полностью.
![]() |
![]() |
а) |
б) |
Рис.1.11. Результаты равномерного квантования с предварительным добавлением шума |


Эта операция повторяется для всех блоков. Получаемое при этом изображение квантуется на два уровня. На рис. 1.12.а приведено полутоновое изображение «Портрет» с добавленным возмущающим сигналом. На рис. 1.12.б,в приведены результаты бинарного квантования изображения «Портрет» с добавленным возмущающим сигналом (рис.1.13.б) и без него (рис.1.13.в).

а)
![]() |
![]() |
б) |
в) |
Рис.1.12.Растрирование изображений |